
Malaysian Journal of Mathematical Sciences 17(2): 151–177(2023)
https://doi.org/10.47836/mjms.17.2.05

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Study of Disease Dynamics of Co-infection of Rotavirus and Malaria with
Control Strategies

Ratti, I.1 and Kalra, P.∗2

1Department of Mathematics, Lovely Professional University, Phagwara, Punjab, India
2School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara,

Punjab, India

E-mail: kalra.preety@gmail.com
∗Corresponding author

Received: 26 August 2022
Accepted: 14 March 2023

Abstract

This paper proposes a model that addresses the interaction and dynamics of malaria and ro-
tavirus co-infection. The model incorporates various epidemiological and biological features of
both the malaria and rotavirus. The mode of transmission of both the diseases is different as
malaria is vector borne disease causing infection through infected arthropod and rotavirus is
a contagious virus causing diarrhoea by the inflammation of intestines and stomach. It is be-
ing assumed in the model that humans are susceptible to malaria and rotavirus simultaneously.
It is further assumed that the recovered population, whether naturally or through treatment is
prone to the infection again. The co-infection dynamics of diseases is studied with different con-
trol measures in the form of treatments to both human and vector compartments. In order to
visualize the effect of diverse control strategies, we studied three models, that is, one, in the ab-
sence of malaria disease, second, in the absence of rotavirus disease and third, for co-infection
of both the diseases. To understand the dynamics of co-infection, the stability analysis of the
full model for disease-free equilibrium and the threshold value, which is, the basic reproduc-
tion number is calculated. Bifurcation analysis is performed for full co-infection model along
with that of malaria-only model. Both rotavirus-only model andmalaria-only models are found
to be globally asymptotically stable at disease-free equilibrium. Sensitivity indices have been
calculated to study the effect of model parameters on the basic reproduction number. Results
are illustrated with numerical simulation.

Keywords: malaria-rotavirus; stability analysis; next generation matrix; control measures; co-
infection; basic reproduction number.
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1 Introduction

There are various infections that may infect a host ([16], [17]) and that may altogether. There
are many examples of them involving HIV and TB [37], HIV and hepatitis B [14], malaria and
HIV [22], malaria and rotavirus [29], chikungunya and dengue, HIV-HBV co-infection [36] and
many more ([18], [33]). Moreover, this infection may occur with different serotypes or various
strains of same virus. Simultaneous infections may also occur even when it seems that there is no
synergy between the two agents affecting the person. This dynamics of co-infection is important
to study as the treatment of one infection affects the dynamics of the other infection. Disease,
poverty, sanitation, health care, nutrition, access to facilities are various factors accountable for
killing people with these infectious agents.

Malaria and rotavirus co-infection is the cause of big burden of public health worldwide. The
co-infection with malaria is typically difficult to understand and diagnose as the main species
responsible for it is Plasmodium falciparum which is unicellular protozoan parasite infecting hu-
mans and it is the lethal species of Plasmodium causing malaria in humans. The main mosquito
species responsible for malaria are Plasmodium ovale, Plasmodium vivax, Plasmodium malariae and
Plasmodium falciparum but P. falciparum is most fatal to human kind. P. falciparum can cause asymp-
tomatic infections, chronic and sometimes repeated acute infection. Generally, an individual ac-
quires a degree of immunity but if a febrile individual is co-infected with any other potential
pathogen, it is hard to diagnose that P. falciparum is the sole cause of illness. It is the most impor-
tant disease in the tropical regions with around 40% of world total population exposed to malaria
in around 100 countries, it is a major health problem globally [41]. Its symptoms include severe
headache, vomiting, nausea, fever, back pains, sweating and chills ([39], [45]). Malaria is respon-
sible for about 700, 00 − 2.7 million causalities every year out of which 75% are African children
under age of five years [7]. It is responsible for 30% of OPD, 19% of admissions to hospitals for
various diseases and around 20% of deaths in children having age less than five years as seen in
Kenya ([9], [46]). Prevention ofmalaria can be done through insect repellents, mosquito bed nets,
draining of dirty water and spray of chemical insecticides etc. Many researchers have done a lot
of work in the field of controlling the disease with different control measures.

On the other hand, the other infectious disease under study is rotavirus which is the most
prevalent pathogen accountable for diarrhea among children [26]. It is transferred through fecal-
oral route when person gets in contact with contaminated water, surface or object. It can also be
transferred by respiratory route. Rotavirus causes severe infection of gastrointestinal tract and
diarrhea in young children. It is the second main cause of mortality for children under five years
[25]. Around the world, diarrhea claims 760, 000 deaths in children every year [29]. Over 2.5% of
admissions to hospitals are because of rotavirus. It has been diagnosed clinically that 38% of the
children gets protected against any rotavirus infection after first natural infection [30]. It has been
observed that various factors associated with rotavirus infection are seasonality, breast feeding
[5], hygiene, sanitation etc. [38]. The authors further probed by estimating number of deaths
due to rotavirus infection for England and Wales. The data from Office for National Statistics
of Deaths in children was taken into consideration. It was observed that there were 3.8 and 3.2
deaths due to rotavirus yearly when calculated by two different methods [15]. Further, the study
was highlighted by understanding the effectiveness of vaccine for rotavirus on children with age
less than 2 years in El Salvador [8]. It was concluded in [21] that vaccine efficacy gets reduced in
low socio-economic settings population. The research was taken to the next level by Bishop et al.
[4] in which clinical immunity after neonatal rotavirus infection was discussed. It was observed
that it does not make children immune against reinfection but it protects them against clinically
severe disease. Water and sanitation improvements, management of oral rehydration solution and
vaccines were suggested as control measures by Mulholland et al. [23].
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It was further observed that in Northern Ghana, rotavirus is the major cause in children of
acute diarrhea. It was supported by a study conducted at Bulpeila health centre, that 15% of
children with uncomplicated malaria has diarrhea. In Ghana, it was found that 11.8% of the total
number of 243 children were tested co-infected with P. falciparum and enteropathogens, where in
more than half of the infected persons rotavirus was common enteropathogen [34]. The study
was further taken ahead by co-infection model for rotavirus and malaria by [29]. The work was
progressed by another co-infection model for rotavirus and malaria developed by authors of [27].
In the work, effect of vaccination for rotavirus disease on co-infection dynamics was explored. It
was further done by making SIR model for host (human) and SI model for vector (mosquito)
for malaria disease with control measure as vaccination only for rotavirus. The effect of rotavirus
vaccination on malaria and rotavirus co-infection was explored. It was found that rotavirus only
modelwas globally asymptotically stablewhere co-infectionmodel exhibits backward bifurcation.
Further, it was concluded that rotavirus vaccination helps reduce co-infection.

A mathematical model on co-infection of malaria and cholera has been formulated and ana-
lyzed by [28]. The co-infectionmodelwas found to exhibit backward bifurcation. Itwas concluded
that malaria infection can increase the risk of cholera but cholera infection does not accelerate risk
of malaria. The impact of treatment of malaria on the dynamics of the infection of cholera has also
been elaborately discussed. Thework on co-infection of diseases has been taken to next level by re-
searchers in [35] in which the conditions of optimal control for the co-infection of HIV-malaria are
analyzed. Analysis of sub-models shows that malaria only model exhibits backward bifurcation.
It was concluded that for optimal control of HIV-malaria, preventive control measures are the best
form of strategy. To minimize the infection and cost associated with control measures, a dynamic
model for the co-infection of measles and dysentery has been formulated and analyzed by Berhe
et al. [3]. The controls like vaccination, treatment and sanitation of surroundings have been in-
cluded. Further, the cost effectiveness analysis has been done using cost effectiveness ratio. Taking
the work to next level, Tilahun et al. developed amathematical model for Typhoid-Pneumonia co-
infection [42]. Sensitivity index of the co-infection model and bifurcation analysis has been done
to check the most sensitive parameters. It was concluded that Pneumonia treatment cost least
with prevention of Typhoid fever. The necessary conditions for optimal control have been also de-
rived along with an optimality system. A mathematical model on the co-infection of cancer and
hepatitis has been formulated and studied by authors in [1].

Malaria and rotavirus models have been studied individually ([5], [38] and [41]) and some
researchers have worked to calculate the key factor R0. From the previous studies, it is quite clear
that there aremodels that studiedmalaria-rotavirus co-infection ([27], [29]) but still there is scope
in the field. In thework done by authors in [29], stability analysis of malaria-rotavirus co-infection
model is done. Further, in the work done by [27], malaria-rotavirus co-infection is studied with
treatment given only to rotavirus infected class.

The model developed in the present study represents co-infection dynamics of rotavirus and
malaria disease that is complete enough to consider all the possible control measures not only on
humans but also for mosquitoes responsible for the spread of malaria. Here, control measures are
taken for rotavirus infected human population, malaria infected human population, co-infected
human population and insecticide is taken as control measure for mosquito population. Taken to-
gether, these control measures gives a picture that is likely to produce better results of co-infection
control.
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2 Formulation and Description of the Model

We propose a model for co-infection of rotavirus and malaria with various control measures.
Since, we are dealing with vector-host interaction, there are separate compartments for host and
vector in the formulation of model. In the model, it is being assumed that a person can recover
from malaria disease only, rotavirus disease only and also from the co-infection once co-infected
with the diseases. It is also being assumed that all rotavirus recovered humans, malaria recovered
humans and humans recovered from both the diseases are not permanently recovered. Therefore,
they are susceptible to the diseases again. The total human population (Nh) is divided into dif-
ferent compartments namely susceptible class (Sh), class infected with rotavirus only (Ir), class
infected withmalaria only (Im), class infected with both rotavirus andmalaria (Imr), only malaria
recovered class (Rm), only rotavirus recovered class (Rr), malaria-rotavirus recovered or removed
class (Rmr). Similarly, the total mosquito/vector population (Nv) is divided in two compartments
namely susceptible vector (Sv) and infected vector (Iv).

In the model, A is the recruitment of susceptible human population and B is recruitment of
susceptible mosquito population. It is being assumed that susceptible humans gets infected with
malaria after the bite of malaria infected mosquito at biting rate a per day. So, susceptible person
gets infection of malaria with a force λm = abIv

Nh
. Malaria infected individuals (Im) recover natu-

rally at a rate ηm and by treatment t1. Malaria infected population gets reduced by disease death
rate α1 and natural death µh. Further, malaria recovered population become susceptible again at
a rate β. Again, malaria is transmitted to susceptible vector population after coming in contact
with malaria infected individual through biting. So, a susceptible mosquito gets infected at a rate
λv = ac(Im+θ1Imr)

Nv
. Mosquito population is reduced naturally at rate µv and by pesticide at a rate

q. It is being assumed that there are no disease deaths in mosquitoes and also they do not recover
from malaria once infected. So, there is no recovered compartment for mosquitoes.

Susceptible humans gets infected with rotavirus at a rate λr = r(Ir+θ2Imr)
Nh

after coming in con-
tact with rotavirus infectious human. Here, r is taken to be the effective contact rate of susceptible
humans with rotavirus infected humans. Rotavirus infected population is decreased by natural
recovery rate ηr and through treatment at rate t2. It is also dwindled by disease death with rate α2

and natural death rate µh. Here θ2 models that humans co-infected with malaria-rotavirus both
are more infectious than only-rotavirus infected [11]. Malaria infected individuals gets infected
with rotavirus at rate δλr and gets transferred to co-infected compartment. The parameter δ > 1
is for increased susceptibility of individual getting infected with rotavirus than those who already
have malaria. According to the authors in [2], there are chances of co-infection as malaria causes
immunosuppression especially in young children. In the same way, humans having rotavirus in-
fection gets infected with malaria at rate ξλm shifting the individual to co-infected compartment
Imr. Again, ξ > 1 accounts for increased susceptibility of malaria infection in human having
weak immune system due to rotavirus. Co-infected humans recover from rotavirus at rate αr and
gets transferred to malaria infected compartment. Similarly, co-infected individuals recover from
malaria and gets transferred to rotavirus-only infected compartment at rate αm.

2.1 Model equations

The model describes malaria-rotavirus co-infection with treatments for both malaria and ro-
tavirus as control measures for humans and usage of insecticide for vector population to control
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malaria. The model equations are given as:

˙Sh(t) = A− (λm + λr + µh)Sh + βRm + βRr + βRmr,

˙Im(t) = λmSh + αrImr − (δλr + ηm + t1 + α1 + µh)Im,

˙Ir(t) = λrSh + αmImr − (ξλm + ηr + t2 + α2 + µh)Ir,

˙Imr(t) = δλrIm + ξλmIr − (α3 + ηmr + αr + αm + t3 + µh)Imr,

˙Rm(t) = (ηm + t1)Im − (µh + β)Rm,

˙Rr(t) = (ηr + t2)Ir − (µh + β)Rr,

˙Rmr(t) = (ηmr + t3)Imr − (µh + β)Rrm,

˙Sv(t) = B − λvSv − (µv + q)Sv,

˙Iv(t) = λvSv − (µv + q)Iv.

(1)

With initial conditions as Sh(0) > 0, Im(0) > 0, Ir(0) > 0, Imr(0) > 0, Sv(0) > 0, Iv(0) > 0.

Here, the total population Nh(t) and Nv(t) satisfies

Nh(t) = Sh(t) + Im(t) + Ir(t) + Imr(t) +Rm(t) +Rr(t) +Rmr(t), Nv(t) = Sv(t) + Iv(t).

Upon adding the equations in (1) separately for humans and vectors, we get

Ṅh = A− µhNh − α1Im − α2Ir − α3Imr,

Ṅv = B − µvNv − qNv.
(2)

It is evident from equation (2), that when there is no disease in the population,

Ṅh ≤ A− µhNh.

After solving above equation and calculating as time approaches infinity, we have

Ω1 = {(Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv) ∈ R9
+ : 0 ≤ Nh ≤ A

µh
}.

Similarly, for vector population, in case of no death due to insecticide

Ṅv ≤ B − µvNv.

After solving this equation as time tends to infinity, we get,

Ω2 = {(Sv, Iv) ∈ R2
+ : 0 ≤ Nv ≤ B

µv
}.

The solution set of the system is bounded in Ω = Ω1 × Ω2.

2.2 Notations and parameters in the model

The terms used in the model are given in the tabular form below:

155



I. Ratti and P. Kalra Malaysian J. Math. Sci. 17(2): 151–177(2023) 151 - 177

Table 1: Description of parameters.

Parameters Description
r Effective contact rate of susceptible human with rotavirus infected hu-

man
β The rate at which recovered population becomes susceptible again
ηm Natural recovery rates from malaria
ηr Natural recovery rates from rotavirus
ηmr Natural recovery rates from malaria-rotavirus both
t1 Effective treatment control on malaria
t2 Effective treatment control on rotavirus
t3 Effective treatment control on malaria-rotavirus both
αr Rate at which co-infected recover from rotavirus and transfer to malaria

infected
αm Rate at which co-infected recover frommalaria and transfer to rotavirus

infected
α1 Disease deaths due to malaria
α2 Disease deaths due to rotavirus
α3 Disease deaths due to malaria and rotavirus both
a The average bites by mosquito on humans
b Transmission rates per bite from malaria infected mosquito to suscepti-

ble human
c Transmission rates per bite from malaria infected human to susceptible

vector
µh Natural mortality rates of humans
µv Natural mortality rates of mosquitoes
q Mortality rate of mosquitoes due to insecticide
δ For increase in human susceptible to rotavirus infection who is already

malaria infected
ξ Models increase in human susceptible to infection with malaria already

infected with rotavirus
θ1 For increase in probability of infection in vector from co-infected human

[29]
θ2 Models that co-infected are more contagious than that infected with

only rotavirus [11]
∗Table for parameters

Here,

λm =
abIv
Nh

, λv =
ac(Im + θ1Imr)

Nv
, λr =

r(Ir + θ2Imr)

Nh
.

3 Positivity and Boundedness of Solution of Co-infection Model

To perform the analysis of the model given by (1), it is very important to see the positivity and
boundedness of the solutions of all variables involved in the model. As the model proposed is for
dynamics of mosquito and human, it is being assumed that all the parameters taken in the model
are positive.
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Theorem 3.1. With the initial conditions proposed in the model to lie in T , where

T = {(Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv) ∈ R9
+ : Sh ≥ 0, Im ≥ 0, Ir ≥ 0, Imr ≥ 0,

Rm ≥ 0, Rr ≥ 0, Rmr ≥ 0, Sv ≥ 0, Iv ≥ 0}.

then there exists a unique solution for system of equations given by (1) and solution of above model remain
in T for all time t ≥ 0.

Proof. Taking the first equation of co-infection model (1),

˙Sh(t) = A+ βRm + βRr + βRmr − (λm + λr + µh)Sh,

Ṡh(t) ≥ −(λm + λr + µh)Sh.

Integrating above equation with respect to t, we get

Sh(t) ≥ Sh(0)e
−

∫
(λm+λr+µh)dt ≥ 0.

Since λm + λr + µh > 0 and by the initial condition Sh(0) > 0. This implies that Sh(t) > 0.

Similarly, taking second equation of co-infection model (1),

˙Im(t) = λmSh + αrImr − δλrIm − ηmIm − t1Im − α1Im − µhIm,

˙Im(t) ≥ −(δλr + ηm + t1 + α1 + µh)Im.

Integrating above equation w.r.t to t, we get,

Im(t) ≥ Im(0)e−
∫
(δλr+ηm+t1+α1+µh)dt ≥ 0.

Since (δλr + ηm + t1 +α1 +µh) > 0 and by the initial condition Im(0) > 0. This implies Im(t) > 0.

Similarly, Rm(t) ≥ 0 ∀ t > 0. Now, taking second last equation of co-infection model (1),

˙Sv(t) = B − λvSv − (µv + q)Sv,

˙Sv(t) ≥ −(λv + q + µv)Sv.

Integrating above equation w.r.t to t, we get,

Sv(t) ≥ Sv(0)e
−

∫
(λv+q+µv)dt ≥ 0.

Since (λv + q + µv) > 0 and by the initial conditions Sv(0) > 0. This implies that Sv(t) > 0.
Similarly, we can prove that other variables are also positive and this proves the theorem.

To proceed further, it is important to study and analyse the disease transmission of both the
diseases individually. For this, we will study the co-infection model (1) in the absence of malaria
disease (rotavirus model) and the same model in the absence of rotavirus (malaria model) sepa-
rately. The individual models for both the diseases are given in the following section.

4 Models for Rotavirus and Malaria

We will study the individual models for rotavirus and malaria separately.
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4.1 Model to study disease dynamics of rotavirus only

By excluding terms related to malaria from the co-infection model given by (1), the single
rotavirus-only model is given by

˙Sh(t) = A− λrSh − µhSh + βRr,

˙Ir(t) = λrSh − ηrIr − t2Ir − α2Ir − µhIr,

˙Rr(t) = ηrIr + t2Ir − µhRr − βRr.

(3)

4.2 Model to study disease dynamics of malaria only

Leaving out the terms related to rotavirus in the co-infectionmodel given by (1), we getmalaria-
only model

˙Sh(t) = A− λmSh − µhSh + βRm,

˙Im(t) = λmSh − ηmIm − t1Im − α1Im − µhIm,

˙Rm(t) = ηmIm + t1Im − µhRm − βRm,

˙Sv(t) = B − λvSv − (µv + q)Sv,

˙Iv(t) = λvSv − (µv + q)Iv.

(4)

In the next section, the analysis of the main model given by (1) will be studied by performing
analysis of the two models given by equations (3) and (4).

4.3 Analysis of individual models

In this section, we analyse the individual models by calculating their disease-free equilibrium
points, basic reproduction numbers and stability at these points.

4.3.1 Analysis of the model considering rotavirus disease only

First, we will start by calculating disease-free equilibrium of model (3) for rotavirus disease.
Disease-free equilibriumofmodel dealingwith rotavirus disease only is given byE0r =

(
A
µh

, 0, 0
)
.

4.3.2 Basic reproduction number

The stability of disease-free equilibrium point of rotavirus-only model is checked by basic re-
production number. It is very important factor for dynamics of the model. It is defined as the total
number of secondary infections produced by a single infective in a totally naive population. We
apply next generation matrix method given by Driessche [43]. We separate the transition terms
and transmission terms from the infected compartment. Here, all the new infections are taken in
the matrix named F and all other transitions are taken in the matrix named V . Let F = [r] and
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V = [−(ηr + t2 + µh +α2)]. Then we calculate the matrix FV −1. The spectral radius of the matrix
FV −1 is denoted by R0 and is called basic reproduction number. It is given by

R0 = ρ(FV −1).

R0r =
r

ηr + t2 + µh + α2
, (5)

here,R0r < 1 implies that r < ηr+t2+µh+α2,whichmeans that effective contact rate of rotavirus
from rotavirus infected human with susceptible human is less than total recovery rate (natural as
well as with treatment) and death rate of human (natural death as well as disease death). This
justifies the disease-free state that if transmission rate of any disease is less than its recovery, that
disease will definitely die out .

In the upcoming sections, the local stability analysis and global stability analysis at disease-free
equilibrium of rotavirus has been performed.

4.3.3 Local stability analysis of disease-free equilibrium of rotavirus model

The above result of disease-free equilibrium of rotavirus-only model can be written as:

Theorem 4.1. The disease-free equilibrium of rotavirus-only model is locally asymptotically stable ifR0r <
1 and is unstable for R0r > 1.

Proof. We will find the stability conditions at disease-free equilibrium by calculating the varia-
tional matrix. The condition for stability of DFE is attained by applying Routh-Hurwitz criteria
for stability at required points. The Jacobian matrix of the system (3) at disease-free equilibrium
E0r =

(
A
µh

, 0, 0
)
is given as

J0 =

 −µh −r β
0 r −M 0
0 ηr + t2 −µh − β

 ,

where M = ηr + t2 + µh + α2.

The eigenvalues are λ = −µh,−µh − β, r−M. First two eigenvalues are negative. For third eigen-
value to be negative, r −M < 0, which implies r

M < 1,

R0r < 1.

4.3.4 Global stability analysis of disease-free equilibrium of rotavirus model

The global stability analysis of rotavirus model is performed by considering a suitable Lya-
punov function [19] and La Salle invariant principle [20].

Theorem 4.2. The disease-free equilibrium E0r of the sub-model (3) is globally asymptotically stable in Ω
if R0r < 1.
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Proof. Consider a Lyapunov function for the system (3):

V (t) = (ηr + t2 + µh + α2) Ir.

Let (ηr + t2 + µh + α2) = M , differentiating with respect to time, we get,

˙V (t) = (ηr + t2 + µh + α2)İr,

= M(
rIrSh

Nh
−MIr),

≤ M(r −M)Ir,

= M2(R0r − 1)Ir,

≤ 0.

If R0r ≤ 1. It follows that ˙V (t) ≤ 0 for R0r ≤ 1.

Clearly, V̇ = 0 is true if and only if R0r = 1 or Ir = 0. Therefore, by Lyapunov LaSalle Principle
[20], every solution of the system (3) in the feasible region approaches E0r as time approaches
infinity.

4.3.5 Analysis of the model considering malaria disease only

To understand the dynamics of malaria in the absence of rotavirus disease, we will perform
stability analysis at disease-free equilibrium of the model given by (4). Disease-free equilibrium
is denoted as E0m

(
S0
h, I

0
m, R0

m, S0
v , I

0
v

)
i.e
(

A
µh

, 0, 0, B
µv+q , 0

)
.

4.3.6 Basic reproduction number

To see the disease dynamics, we need to calculate basic reproduction number by next genera-
tion matrix method given by Driessche [43]. We divide the coefficient matrix of infected compart-
ment Im and Iv of the system (4) into two matrices F and V . The matrix F is for transmission,
that is, new infections and V is for transition terms, which are given below

F =

(
0 ab
ac 0

)
,

and
V =

(
−(ηm + t1 + α1 + µh) 0

0 −(µv + q)

)
.

Calculating the matrix J = FV −1, we get,

J = FV −1 =

(
0 − ab

(µv+q)

− ac
ηm+t1+α1+µh

0

)
.

The eigenvalues of the above determinant are calculated by

J − λI = 0,

where,

J − λI =

(
−λ − ab

(µv+q)

− ac
ηm+t1+α1+µh

−λ

)
.
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Now, the spectral radius of thematrix FV −1 denoted byR0m is called basic reproduction num-
ber, that is

R0m = ρ(FV −1),

which implies

R0m =

√
a2bc

(ηm + t1 + α1 + µh)(µv + q)
. (6)

R0m < 1 implies a2bc < (ηm + t1 + α1 + µh)(µv + q). This can be interpreted that the collective
transmission rate of malaria disease from infected human to susceptible mosquito and from in-
fected mosquito to susceptible human along with mosquito biting rate is less than the cumulative
recovery rate (natural as well as with treatment) and death rate (natural as well as with disease)
which in turn justifies the disease-free state as transmission of any disease should be less than its
recovery and death. Also, it is noteworthy that in case of vector-host models when an infectious
mosquito or an infectious human is introduced in a completely naive population, the basic repro-
duction number is always in the form of square, that is, R2

0. This is interpreted in a way that it
takes two generations for infectious host/vector to reproduce itself [44]. In the upcoming section,
local stability analysis is performed at disease-free equilibrium points.

4.3.7 Local stability analysis of malaria model at disease-free equilibrium

By applying theorem 2 of Driessche and Watmough [44], the following result is stated:

Theorem 4.3. The disease-free equilibrium of the model (4) for malaria disease only is locally asymptotically
stable if R0m < 1 and unstable if R0m > 1.

Proof. Firstly, we will calculate the variational matrix to see the local stability of disease-free equi-
librium. Further, to calculate that, we need to find the eigenvalues of the system. The Jacobian
matrix at disease-free equilibrium E0m

(
S0
h, I

0
m, R0

m, S0
v , I

0
v

)
i.e E0m

(
A
µh

, 0, 0, B
µv+q , 0

)
is

J0 =


−µh 0 β 0 −ab
0 −L 0 0 ab
0 −(ηm + t1) −µh − β 0 0
0 −ac 0 (µv + q) 0
0 ac 0 0 −(µv + q)

 ,

where L = ηm + t1 + α1 + µh.

The eigenvalues are λ = −µh,−(µv + q),−µh − β. Other eigenvalues are given by

λ2 + λ(L+ µv + q) + L(µv + q)− a2bc = 0.

It can be rewritten as

λ2 + l1λ+ l2 = 0,

where l1 = (L+ µv + q) and l2 = L(µv + q)− a2bc.

According to Routh-Hurwitz criteria l1 and l2 should be both positive for the equilibrium to be
stable. It is quite clear that l1 > 0.
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Now, l2 > 0 implies L(µv + q) > a2bc, implying

a2bc

(ηm + t1 + α1 + µh)(µv + q)
< 1,

which implies
R2

0m < 1.

4.3.8 Bifurcation analysis of malaria model

The phenomenon of bifurcation is proved by applying centre manifold criteria for the system
(4). Applying the Centre Manifold Theorem [6] along with [28], bifurcation analysis is carried
out. Let us consider b∗ as bifurcation parameter so that R0m = 1. Here

b∗ =
L(µv + q)

a2c
.

Now, we transform the variables in the system (1) as:

Sh = x1, Im = x2, Rm = x3, Sv = x4, Iv = x5.

The system takes the form:

ẋ1 = A− (λm + µh)x1 + βx3,

ẋ2 = λmx1 − (ηm + t1 + α1 + µh)x2,

ẋ3 = (ηm + t1)x2 − (µh + β)x3,

ẋ4 = B − λvx4 − (µv + q)x4,

ẋ5 = λvx4 − (µv + q)x5,

(7)

where

λm =
abx5

Nh
, λv =

acx2

Nv
.

Firstly, the Jacobian of the system (7) is calculated at E0m, which is given by

J0m =


−µh 0 β 0 −p1
0 −L 0 0 p1
0 p2 −p3 0 0
0 −p4 0 −p5 0
0 p4 0 0 −p5

 ,

where
p1 = ab, p2 = ηm + t1, p3 = µh + β, p4 = ac, p5 = µv + q.

Now, we will calculate the left and right eigenvectors of the Jacobian J0m. Let us denote the left
and right eigenvectors v and w, where v = [v1, v2, v3, v4, v5]

T and w = [w1, w2, w3, w4, w5]
T . We

get,

w1 =

(
w2

µh

)(
βp2
p3

− p1p4
p5

)
, w2 = w2, w3 =

p2w2

p3
, w4 =

−p4w2

p5
, w5 =

p4w2

p5
,
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and
v1 = v3 = v4 = 0, v2 = v2, v5 =

p1v2
p5

.

After rigorous calculation and calculating the coefficients l and m from the theorem in [6], we
have,

l = −w5

[
v2w2ab

∗µh

A
+

v2w3ab
∗µh

A
+

v5w2ac(µv + q)

A

]
,

and
m = av2w5.

As the coefficientm is positive definite and l < 0. From the theorem in [6], the system undergoes
forward bifurcation.

4.3.9 Global stability analysis of malaria model at disease-free equilibrium

The global stability analysis ofmalariamodel is performed by considering a suitable Lyapunov
function [19] and La Salle invariant principle [20].

Theorem 4.4. The disease-free equilibrium E0m of the sub-model (4) is globally asymptotically stable in
Ω if R0m < 1.

Proof. Consider a Lyapunov function for the system (4):

V (t) = acIm + (ηm + t1 + µh + α1) Iv.

Here (ηm + t1 + µh + α1) = L, differentiating with respect to time, we get,

˙V (t) = ac ˙Im + Lİv,

= ac

(
abIvSh

Nh
− LIm

)
+ L

(
acImSv

Nv
− (µv + q)Iv

)
,

≤ a2bcIv − acLIm + acLIm − (µv + q)LIv,

= a2bcIv − (µv + q)LIv,

= (µv + q)LIv

[
a2bc

(µv + q)L
− 1

]
,

= (µv + q)LIv
[
R2

0m − 1
]
,

≤ 0,

if R0m ≤ 1. It follows that ˙V (t) ≤ 0 for R0m ≤ 1.

Clearly, V̇ = 0 is true if and only if R0m = 1 or Iv = 0. Therefore, by Lyapunov Lasalle Principle
[20], every solution of the system (4) in the feasible region approachesE0m as time approaches in-
finity. Therefore, the disease-free equilibriumE0m of the sub-model (4) is globally asymptotically
stable in Ω if R0m < 1. Hence the theorem is proved.
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5 Analysis of Co-infection Model

The disease-free equilibrium of co-infection model is given by (1)

E0rm

(
S0
h, I

0
m, I0r , I

0
mr, R

0
m, R0

r , R
0
rm, S0

v , I
0
v

)
= E0rm

(
A

µh
, 0, 0, 0, 0, 0, 0,

B

µv + q
, 0

)
.

In the coming section, we will find the basic reproduction number of the main model given by
(1) as it is the threshold value that help us to decides the dynamics of the disease. Also, the
global stability analysis will be performed along with bifurcation analysis of the model. There
may be some parameters for which systemmay be sensitive. It will be checked through sensitivity
analysis.

5.1 Basic reproduction number of co-infection model

The basic reproduction number of co-infection model (1) is given by

R0 = max{R0r, R0m},

where R0r and R0m are given by equations 5 and 6.

5.2 Global stability analysis of co-infection model

We study the global asymptotic stability of the model (1) by Castillo-Chavez et al. approach in
[6]. For that, we express the system of the equations given by (1) in the form:

Ẋ = F (X,Z),

Ż = G(X,Z), G(X, 0) = 0,

whereX andZ stands for uninfected and infected populations. Here,X = (Sh, Rm, Rr, Rmr, Sv)
and Z = (Im, Ir, Imr, Iv). Let the disease-free equilibrium of the model be E0 = (X0, 0), where
X0 =

(
A
µh

, B
µv+q

)
. Tomake sure, the system is globally asymptotically stable, the conditions given

by C1 and C2 must be satisfied.

(C1): For Ẋ = F (X, 0), X0 is globally asymptotically stable.

(C2) : G(X,Z) = BZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω,where B =
∂

∂Z
G(X0, 0).

If the model (1) satisfies above two conditions, following results holds.

Theorem 5.1. The disease-free equilibrium of the model given by (1) is globally asymptotically stable for
R0 < 1 and conditions C1 and C2 are satisfied.
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Proof. For the model (1), F (X,Z) and G(X,Z) are given as:

F (X,Z) =


A− (λm + λr + µh)Sh + β(Rm +Rr +Rmr)

(ηm + t1)Im − (µh + β)Rm

(ηr + t2)Ir − (µh + β)Rr

(ηmr + t3)Imr − (µh + β)Rmr

B − λvSv − (µv + q)Sv

 ,

and

G(X,Z) =


λmSh + αrImr − (δλr + ηm + t1 + α1 + µh)Im
λrSh + αmImr − (ξλm + ηr + t2 + α2 + µh)Ir

δλrIm + ξλmIr − (αr + ηmr + t3 + α3 + αm + µh)Imr

λvSv − (µv + q)Iv

 .

Consider the system

F (X, 0) =


A− µhSh

0
0
0

B − (µv + q)Sv

 .

It is clear thatX0 = ( A
µh

, B
µv+q ) is globally asymptotically stable point of above equation of F (X, 0).

This can be verified as the solution of above equation Sh = A
µh

+ (Sh(0)− A
µh

)e−µht and
Sv = B

µv+q + (Sv(0) − B
µv+q )e

−(µv+q)t approaches X0 as time approaches infinity which implies
global convergence of solution of system (1) in Ω,

B =


−(ηm + t1 + α1 + µh) 0 αr ab

0 r − (ηr + t2 + α2 + µh) rθ2 + αm 0
0 0 −(ηmr + t3 + α3 + αm + αr + µh) 0
ac 0 acθ1 −(µv + q)

 .

Then G(X,Z) can be written as G(X,Z) = BZ − Ĝ(X,Z), where

Ĝ(X,Z) =


Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

Ĝ4(X,Z)

 ,

=


abIv(1− Sh

Nh
) + δλrIm

λr(Nh − Sh) + ξλmIr
−(δλrIm + ξλmIr)

λv(Nv − Sv)

 .

Clearly Ĝ3(X,Z) < 0, which implies Ĝ(X,Z) < 0. Hence, condition C2 is not satisfied. Therefore,
E0(X0, 0) may not be globally asymptotically stable for R0 < 1.

5.3 Bifurcation analysis

We use method based on using Center Manifold Theory [6]. For such theorem as mentioned
in [6] (see also [42]), there are two main quantities say a and b which decides the direction of
bifurcation. In particular, if a < 0 and b > 0, then system undergoes forward bifurcation and if
a > 0 and b > 0, then the system exhibits backward bifurcation . Using this theorem, the following
results can be concluded.
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Theorem 5.2. If a0 = βk9

k7
− k3k10

k12
> 0, the system (1) undergoes backward bifurcation at R0 = 1. If the

inequality is reversed, then the system undergoes forward bifurcation at R0 = 1.

Proof. To apply this theory, we consider two important coefficients b and r to be bifurcation pa-
rameters for R0r = 1 and R0m = 1 iff r = r∗ and b = b∗, where

r = r∗ = ηr + t2 + µh + α2,

and
b = b∗ =

(µv + q)(ηm + t1 + α1 + µh)

a2c
.

Now, we transform the variables in the system (1) as:

Sh = x1, Im = x2, Ir = x3, Imr = x4, Rm = x5, Rr = x6, Rmr = x7, Sv = x8, Iv = x9.

Let x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T and F = (f1, f2, f3, f4, f5, f6, f7, f8, f9)

T , then the
system given by (1) takes the form

ḋx = F (x), (8)

can be presented as:

ẋ1 = A− (λm + λr + µh)x1 + βx5 + βx6 + βx7,

ẋ2 = λmx1 + αrx4 − (δλr + ηm + t1 + α1 + µh)x2,

ẋ3 = λrx1 + αmx4 − (ξλm + ηr + t2 + α2 + µh)x3,

ẋ4 = δλrx2 + ξλmx3 − (α3 + ηmr + αr + αm + t3 + µh)x4,

ẋ5 = (ηm + t1)x2 − (µh + β)x5,

ẋ6 = (ηr + t2)x3 − (µh + β)x6,

ẋ7 = (ηmr + t3)x4 − (µh + β)x7,

ẋ8 = B − λvx8 − (µv + q)x8,

ẋ9 = λvx8 − (µv + q)x9,

(9)

where λm =
abIv
Nh

, λv =
ac(Im + θ1Imr)

Nv
and λr =

r(Ir + θ2Imr)

Nh
. The Jacobian of the system (9)

at disease-free equilibrium ( A
µh

, 0, 0, 0, 0, 0, 0, B
µv+q , 0) is

J2 =



−µh 0 −k1 −k2 β β β 0 −k3
0 −L 0 αr 0 0 0 0 k3
0 0 k4 k5 0 0 0 0 0
0 0 0 −N 0 0 0 0 0
0 k6 0 0 −k7 0 0 0 0
0 0 k8 0 0 −k7 0 0 0
0 0 0 k9 0 0 −k7 0 0
0 −k10 0 −k11 0 0 0 −k12 0
0 k10 0 k11 0 0 0 0 −k12


,

where,

k1 = r, k2 = rθ2, k3 = ab, k4 = r −M, k5 = rθ2 + αm, k6 = ηm + t1,

k7 = µh + β, k8 = ηr + t2, k9 = ηmr + t3, k10 = ac, k11 = acθ1,

k12 = µv + q, N = (α3 + ηmr + αr + αm + t3 + µh) .
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Now, we will calculate the right eigenvector of the Jacobian J2.

Let it be denoted by w = [w1, w2, w3, w4, w5, w6, w7, w8, w9]
T . After calculation, we get,

−µhw1 − k1w3 − k2w4 + βw5 + βw6 + βw7 − k3w9 = 0,

−Lw2 + αrw4 + k3w9 = 0,

k4w3 + k5w4 = 0,

−Nw4 = 0,

k6w2 − k7w5 = 0,

k8w3 − k7w6 = 0,

k9w4 − k7w7 = 0,

−k10w2 − k11w4 − k12w8 = 0,

k10w2 + k11w4 − k12w9 = 0.

(10)

From above set of equations (10), we get,

w1 =
w2

µh
(
βk6
k7

− k3k10
k12

), w2 = w2, w3 = w4 = 0, w5 =
k6w2

k7
,

w6 = w7 = 0, w8 = −k10w2

k12
, w9 =

k10w2

k12
.

Let the left eigenvector of Jacobian J2 associated with zero eigenvalue is denoted by

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9]
T .

After calculation, we get,

−µhv1 = 0,

−Lv2 +K6v5 − k10v8 + k10v9 = 0,

−k1v1 + k4v3 + k8v6 = 0,

−k2v1 + α2v2 + k5v3 −Nv4 + k9v7 − k11v8 + k11v9 = 0,

βv1 − k7v5 = 0,

βv1 − k7v6 = 0,

βv1 − k7v7 = 0,

−k12v8 = 0,

−k3v1 + k3v2 − k12v9 = 0.

(11)

Here L = ηm + t1 + α1 + µh,M = ηr + t2 + α2 + µh and N = ηmr + t3 + αm + αr + α3 + µh.

Solving the above equations in (11), we get,

v1 = 0, v2 = v2, v3 = 0, v4 =
v2
N

(αr +
Lk11
k10

), v5 = v6 = v7 = v8 = 0, v9 =
Lv2
k10

,

where v2 can be calculated satisfying the condition for eigenvectors v and w such that v.w = 1.
The coefficients l and m are defined in the equations given below :

l =

n∑
k=i=j=1

vkwiwj
∂2fk

∂xi∂xj
(s0h, 0, 0, 0, 0, 0, 0, s

0
v, 0), (12)

m =

n∑
k=i=1

vkwi
∂2fk
∂xi∂b∗

(s0h, 0, 0, 0, 0, 0, 0, s
0
v, 0). (13)
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Here, f ′
is denote the right side of the system of equations given by (9). Considering the system

(9) and taking into account only non-zero components of v, it follows that:

l =
v2w

2
2k10ab

∗a0
µhk12

, m = av2w9,

where
a0 =

βk9
k7

− k3k10
k12

. (14)

Since, the coefficient m is always positive. Hence, the bifurcation of the system (9) at b = b∗

depends on the value of l. From the equation (14), it can be clearly seen that l > 0 iff a0 > 0,
that is, βk9

k7
> k3k10

k12
. Hence, for l > 0, the system exhibits backward bifurcation and for l < 0, it

undergoes forward bifurcation at disease-free equilibrium at R0 = 1.

5.4 Sensitivity analysis

We performed sensitivity analysis of the model parameters. With the help of this, we can
identify those parameters having greater influence on R0, that is, the basic reproduction number.
The technique used by [7] have been applied. Sensitivity index of a function R0 with respect to
any parameter say p is defined as

ΥR0
p =

∂R0

∂p

p

R0
.

Since, R0 = max [R0m, R0r], we have performed the sensitivity analysis for both R0r and R0m

separately.

Table 2: Table for sensitivity indices.

Symbol Sensitivity index
R0r Basic reproduction number for rotavirus-only model
r 1.0000
µh −1.0002
ηr −0.4543
t2 −0.4998
α2 −0.0004
R0m Basic reproduction number for malaria-only model
a 1.0000
b 0.5000
c 0.5000
µh −0.5000
µv −0.0001
q −0.0001
ηm −0.2498
t1 −0.2498
α1 −0.2498

∗Table for sensitivity indices

Positive value of sensitivity index means that corresponding to an increase in given parameter,
there will be increase in basic reproduction number. Whereas a negative value of sensitivity index
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implies that an increase in the parameter value will reflect in the form of decrease in value of
basic reproduction number. From the table 2, it has been observed that the parameters r, a, b
and c have great impact in spreading the disease if their values are increased thereby increasing
basic reproduction number provided other parameters are fixed. This can be clearly verified as
the parameters r, a, b and c are the rates of transmission of disease. So, increase in the values of
these will definitely increase the basic reproduction number and that in turn increases the spread
of these diseases. The parameters having negative sensitivity indices like ηm, ηr, t1, t2 and q will
decrease the value of basic reproduction number if their values are increased thereby controlling
the disease. This is biologically true that increase in recovery naturally or by treatment will control
the spread of disease along with the increased usage of insecticide.

6 Numerical Simulation and Discussion

We simulate the model (1) for different values of treatment in each case. Here, four types of
control strategies are applied: (1) malaria-treatment for malaria infected (2) rotavirus treatment
for rotavirus infected (3) malaria-rotavirus treatment for co-infected (4) insecticide treatment for
vectors (5) all treatments combined.

6.1 Parameter values in the model

Table 3: Values of parameters.

Parameters Description Value Source

a Average number of bites by mosquitoes on
humans

4× 10−1 [32]

b Transmission rate of malaria from infected
mosquito to human

0.83333 day−1 [7]

c Transmission rate of malaria from infected
human to mosquito

7.2× 10−2 day−1 [40]

β Rate at which human recovered from co-
infection transfer to susceptible class (Sh)

0.0027 day−1 [25]

µh Natural mortality rate of humans 2.537× 10−5 day−1 [24]
µv Natural mortality rate of mosquitoes 4× 10−5 day−1 [12]
ηm Natural recovery rate from malaria 0.5 day−1 [10]
ηr Natural recovery rate from rotavirus 0.5 day−1 Assumed
ηmr Natural recovery rate from malaria-

rotavirus co-infection
5.75× 10−4 day−1 Assumed

t1 Effective treatment control for malaria 0.5 day−1 Assumed
t2 Effective treatment control for rotavirus 0.5 day−1 Assumed
t3 Effective treatment control for malaria-

rotavirus co-infection
0.5 day−1 Assumed

α1 Disease death due to malaria 4.49312× 10−4 day−1 [13]
α2 Disease death due to rotavirus 4.466× 10−4 day−1 [31]
α3 Disease death due to malaria-rotavirus co-

infection
5.0× 10−2 day−1 Assumed

q Mortality rate of mosquitoes due to insecti-
cide

0.2 day−1 Assumed

∗Table for values of parameters
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Figures 1 and 2 show the impact of insecticide in eradicating co-infection in the population. It
is verified that co-infection decreases sharply as we apply all the treatments and it takes longer if
we apply insecticide treatment only on vector compartment. It can seen in Figure 1 that it takes 40
days for the infection to die out with only insecticide treatment where as it takes only 10 days for
the infection to vanish with all treatments as can be seen in Figure 2.
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Figure 1: Co-infected population Imr under the effect
of insecticide treatment.
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Figure 2: Recovered from both malaria and rotavirus
Imr under the effect of insecticide treatment.

Similarly, in Figure 3, it can be seen that with malaria treatment only, the co-infection dies out
in around 40 days while it takes around 10 days for the same to happen with all treatments. Also,
it is evident from the Figure 4 that the recovered population is high when all the treatments given.
Similarly, it is apparent from Figure 5 that co-infection dies out in 10 days with all treatments
whereas it takes about 30 days with rotavirus treatment only.
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Figure 3: Co-infected population Imr under the effect
of malaria treatment only.
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Figure 4: Recovered from both malaria and rotavirus
Rmr under the effect of malaria treatment only.
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Figure 5: Co-infected population Imr under the effect
of rotavirus treatment only.
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Figure 6: Recovered from both malaria and rotavirus
Rmr under the effect of rotavirus treatment only.

It can be seen in Figure 7 that co-infection dies off in 10 days with all treatment effects where
as it takes 20 days for the disease to terminate with malaria-rotavirus treatment. Figure 8 shows
that all treatments have better effect on disease progression in comparison to malaria-rotavirus
treatment.
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Figure 7: Co-infected population Imr under the effect
of malaria-rotavirus treatment only.
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Figure 8: Recovered from both malaria and rotavirus
Rmr under effect of malaria-rotavirus treatment only.

We simulated the model for various values of treatments and studied the co-infected and re-
covered population. It is being seen in the Figures 9 and 10 that increase in the value of t3, that
is, malaria-rotavirus treatment decreases the number of days in which co-infection dies off and it
also reduces the amplitude of co-infection.
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Figure 9: Dynamics of co-infected population Imr

with t3 = 0.01.
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Figure 10: Dynamics of co-infected population Imr

with t3 = 0.1.
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We simulated themodel for different values of rotavirus treatment and thenmalaria treatment.
Figures 11, 12, 13 and 14 show the effect of increasing the value of treatments for rotavirus and
malaria i.e. t2 and t1 in decreasing the co-infection.
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Figure 11: Dynamics of co-infected population Imr

with t2 = 0.1.
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Figure 12: Dynamics of co-infected population Imr

with t2 = 0.5.
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Figure 13: Dynamics of co-infected population Imr

with t1 = 1.
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Figure 14: Dynamics of co-infected population Imr

with t1 = 10.

Figure 15 shows the collective impact of different treatments for all the susceptible population
and Figure 16 shows the collective impact of different treatments on co-infected population.
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Figure 15: Susceptible population Sh under the effect
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Figure 16: Co-infected population Imr under the effect
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It is evident that all treatments have better results than any other treatment. Whenwe compare
malaria-rotavirus treatment with all treatments, the results are better with all treatments which
means that the additional treatment factor of insecticide gives additional control on disease trans-
mission. In vector borne diseases, vector control helps in eradicating the disease. As a result, it
can be interpreted that vector control is a major factor in controlling the co-infection along with
other control strategies in reduction of co-infected individuals.

7 Conclusion

A compartmental model for transmission of malaria and rotavirus is formulated and studied
for various control measures/treatments. The effect of various control strategies namely treat-
ment for humans infected with rotavirus, treatment for humans infected with malaria, treatment
for humans co-infected with malaria-rotavirus and insecticide control for mosquito population is
studied. Since, the results are based on theoretical and numerical analysis, they offer some very
important insights about the dynamics of diseases. The underlying relationship of two diseases
under different control scenario is quite clear from the analysis.

Firstly, we studied single disease models and performed the disease-free stability analysis. It
is found that the dynamics of disease is determined by threshold valueR0r andR0m in case of ro-
tavirus andmalaria respectively. According to analysis, disease-free equilibrium is locally asymp-
totically stable as well as globally asymptotically stable for rotavirus-only model andmalaria-only
model if R0r < 1 and R0m < 1 respectively. We derived the basic reproduction number for
co-infectionmodelRmr = max{R0r, R0m}. Sensitivity analysis of the model indicates that the pa-
rameters a, b and c have positive value creating great influence on the spread of malaria whereas
the basic reproduction number of rotavirus-only model is most sensitive to r. Bifurcation analysis
of the full co-infection model is done. The full co-infection model is found to be globally asymp-
totically unstable at disease-free equilibrium. It is evident that single control measure takes longer
to control or eradicate the infection from the system. It is observed that only insecticide treatment
also takes longer to control the infection in human population. It is clear that when all treatments
namely malaria-rotavirus treatment and insecticide treatment to mosquitoes are applied collec-
tively, the infection dies out in much lesser time. This means that the combined strategy saves
more accumulative cases of co-infection than any other strategy of treatment.

As a conclusion, the study indicates that the possibility of controlling the co-infection of ro-
tavirus andmalaria using effective strategies for treatment/controls for both the diseases is bright.
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